
ndnSIM analysis/illustration	tools	for	
collected	metrics
Problem:	ndnSIM tracers	generate	hard	to	read	and	large	output	files.	
Create	a	set	of	scripts	(python,	R,	etc.)	for	the	analysis	and	illustration	
(using	ggplot2,	numpy,	etc.)	of	the	metrics	collected	by	tracers.	
Tasks	to	accomplish:	1)	Creation	of	scripts,	2)	Submit	the	scripts	to	
Gerrit for	review	(the	goal	is	to	get	them	merged	to	the	master	branch	
ASAP),	3)	Demonstration	of	the	resulted	illustration	to	the	judges
Knowledge	Requirements:	ndnSIM,	python	or	R,	c++
Expected	Outcome:	A	set	of	scripts	to	automate	the	analysis	and	
illustration	of	metrics	collected	using	the	ndnSIM tracers

Spyros	Mastorakis	/	Alex	Afanasyev

Demonstration	of	latest	NFD	features	in	
ndnSIM
Problem:	
• New	features	have	been	added	to	NFD	(e.g.,	packet	fragmentation	and	reassembly,	congestion	control,	ad-
hoc	faces).	

• The	goal	is	to	create	ndnSIM simulation	scenarios	and	ndnSIM-specific	(NS-3-based)	or	real	world	
applications	(if	needed)	to	demonstrate	those	features.	

• This	project	would	be	very	useful	for	the	ndnSIM community,	since	there	will	be	ready-to-use	pieces	of	code	
for	the	users	to	experiment	with	the	new	NFD	features

• Tasks	to	accomplish:	1) Create	a	set	of	ndnSIS simulation	scenarios,	applications	and	make	all	the	changes	
needed	to	ndnSIM,	so	that	newly	added	NFD	features	can	be	used	(e.g.,	packet	fragmentation	and	
reassembly,	congestion	control,	ad-hoc	faces	and	any	other	the	developers	might	consider	important	and	
useful)
2)	Create	some	related	documentation,	so	that	we	can	add	the	created	code	on	the	ndnSIM website	
3)	Submit	the	code	to	Gerrit for	review	(the	goal	is	to	get	them	merged	to	the	master	branch	ASAP)	

Knowledge	Requirements:	ndnSIM,	NFD,	ndn-cxx,	c++
Expected	Outcome:	A	set	of	simulation	scenarios,	applications	and	any	other	changes	needed

Spyros	Mastorakis	/	Alex	Afanasyev

Firefly				(Jeff	Burke,	Jeff	Thompson)

A	scalable,	fault-tolerant	message	bus	for	mobile	
applications.	
• Native	NDN	communication	for	robust	and	
disruption	tolerant	communication	at	the	edge.

• Cloud-hosted	“real-time	database”,	Google	
Firebase,	as	its	transport.	

Problem:		
• Sync,	repo,	prefix	propagation,	mobility	
implementations	still	at	research	level	– hard	to	
show	how	they	will	all	work	together	and	what	
they	can	achieve	when	robust.

• At	the	same	time,	many	existing	cloud-based	
solutions	have	problems	if	edge	connectivity	is	
intermittent	or	over	multiple	interfaces,	and	add	
latency.		

Our	approach:
• Show	how	current	best-in-class	(NDN	locally,	
Firebase	globally)	can	be	used	now	for	app	benefit.

Tasks
• Finalize	mapping	between	Firebase	and	NDN	
• Develop	bridge	process	for	linking	a	local	NDN	network	with	a	

Firebase	store
• Implement	client	code	on	ndn-dot-net	and	ndn-js
• Develop	sample	application,	inspired	by	IoT and	AR	experiments	

already	underway	by	NDN	team

Required	Knowledge
• Basic	understanding	of	NDN	including	interest/data	exchange,	

synchronization.
• Familiarity	with	at	least	one	of	the	following	languages,	including	

how	to	use	external	libraries	and	write	event-driven	code:	C#,	
NDN-JS,	and	Python.

• Helpful:	Understanding	of	NoSQL	databases

Outcomes
• Demonstration	application	
• Prototype	library	using	Firebase	as	a	transport
• Insight	into	new	/	similar	/	inspired	functionality	that	could	be	

provided	via	pure	NDN	solutions.

NDN Stack for ESP8266 Microcontroller

• Meet the ESP8266
• 80MHz RISC CPU, 96KB data RAM
• 802.11 b/g/n WiFi chip, full TCP/IP stack
• GPIO pins, analog input, etc
• small package, USD $3 each

• esp8266ndn library:
• Arduino library to bring NDN to ESP8266
• Face with UDP transport, Interest+Data, no dispatch
• ndnping client and server, no prefix registration

• This project: let ESP8266 do more NDN
• prefix registration
• ECDSA signing and verification
• Nack

• Ashlesh Gawande

NDN Stack for ESP8266 Microcontroller

• The little ESP8266 is western maker’s favorite microcontroller with built-in WiFi.
• Giving it NDN makes it more powerful, and makes NDN more appealing.

• You need:
• knowledge about signed Interests
• C++11, ndn-cxx or ndn-cpp-lite API
• Arduino IDE and NFD on your computer, a full size USB 2.0 port

• Project leader will have at least 3 ESP8266 boards.
• Recommended team size is 3. Some tasks do not require using an ESP8266 all the time.

• Project demos:
• ndnping server with prefix registration and Nack
• light control with ECDSA verification

• Ashlesh Gawande

NDN over Docker
• Still remember your first time running NFD?

• You download this and that; compile this and that; install this and that. So let’s make life easier. By
packing the NDN into a Docker container, others can simply install the container and start “surfing”
the NDN

• Tasks
• Know how Docker and Docker container work
• Redo all the steps we did for NDN setup and pack our results into a Docker container.
• Test our container on other operating systems and let them talk in NDN.

• Required knowledge for participants
• Once in your life time have successfully finished NDN environment setup.

• Expected outcome
• If your OS supports Docker, then you can talk in NDN.

• Zhiyi Zhang, Haitao Zhang

Implementing Broadcast-based Self-learning Forwarding Strategy in NFD

• Motivation and problem statement
• In local area networks and mobile ad-hoc networks, broadcast-based self-learning is a common mechanism to find

packet delivery paths. The main benefits of this mechanism are its simplicity, adaptability, and support of mobility.
• NFD does not have a broadcast-based self-learning forwarding strategy.

• Tasks
• Discovery Interest Indication (#4355)
• Prefix announcement for self-learning (#4280)
• Measurement Table for self-learning
• Self-learning forwarding strategy (#4290)

• Required knowledge for participants
• C++

• Expected outcome
• Accomplish as many tasks as possible

• Teng Liang

Demonstrating the Benefits of In-Network

Congestion Detection

• Working Congestion Control Framework crucial for many applications
• Currently: Ad-hoc solutions or poor performance.

• Demonstrate that Congestion Control can improve app performance
• Build on earlier work (see Redmine)

• Tasks
• Implement congestion detection via queue backlog or link loss detection
• Implement congestion signaling, choose application, and evaluate on real hardware

• Required knowledge for participants
• C++, NFD, socket programming, tc netem

• Expected Outcome: Demonstrate improved app performance

Klaus Schneider, Eric Newberry, Chavoosh Ghasemi

Overview

This project is lead by Nicholas Gordon.

The problem is that there are few ways to showcase NDN
running on the Android platform, and no cases showing
that current, popular software can be done using NDN.

Further, there are few examples of out-of-band key
exchanges for NDN, instead relying on the testbed to fully
vet potential NDN users.

The contributions to the NDN community will be two
apps for Android and an exploration of using QR codes as
a way to exchange information to facilitate secure sharing.

What are we going to do?

Implement unsecure, simple file-sharing, between two
Android phones using NDN.

Develop a namespace for the photo system

Extend the app to have “media aware” actions for
exchanged photos.

Implement the signature self-destruct feature.

Implement QR code functionality with arbitrary text.

Extend system to encrypt files.

(Stretch goal) Integrate with any TPMs to improve
security

(Stretch goal) Use session keys to encrypt instead,
improving cachability.

(Stretch goal) Integrate with the testbed to enable sharing
over it.

Other details

What do you need to know?

NDN basics: namespace design, sync fundamentals, key
systems

Android app development

For one of the stretch goals, Android system programming

What will we have done at the end?

Delivered two usable, useful apps for Android that
showcase NDN.

Explore key exchange using QR codes and cameras.

Explore challenges associated with e�cent encryption and
namespace design.

NFD measurements table manager

• Motivation
• Currently, NFD’s measurements table is not exposed to management clients
• Hard to retrieve stats for measurements-based strategies such as ASF
• Help operators and developers understand/debug the behavior of forwarding strategies

• Objective
• Support per-prefix read-only access to the measurements table via NFD management protocol

• Requirements for participants
• C++11
• Understanding of how NFD management works
• High-level understanding of how strategies and the measurements table are implemented
• A machine capable of running NFD

• Siham Khoussi, Davide Pesavento

NFD measurements table manager

• Tasks
1. Implement encoding/decoding of measurement entries, namely (in increasing order of difficulty):

a) For a given name, represent the entry as a free-form string
à Displayed as-is by the client

b) For a given name, represent the entry as a map {face-id => string} or similar structure, where “string” contains
face-specific measurements info
à Strings displayed as-is by the client, indexed by face-id

c) For a given name, represent the entry fields as structured TLVs
à This requires the client to understand the TLV types, but is machine readable

2. Implement an NFD manager that responds to /localhost/nfd/measure/query/PREFIX
3. Implement new nfdc command: nfdc measure query <PREFIX>

• Expected Outcome
• Demonstrate the new nfdc command on the ASF strategy, with ndn-traffic-generator or ndnping

(can use Mini-NDN to emulate topology)

• Siham Khoussi, Davide Pesavento

NFD Content Store Management
• Content Store: all important, little insight

• Is in-networking caching effective? How many cache hits and misses?
• What Data packets are stored in the Content Store?

• This project develops a Content Store (CS) management protocol:
• Show CS hit/miss counters
• Enumerate (a subset of) the Data packets stored in the CS
• Provide a command to erase Data under a given prefix

• You need:
• C++11
• Computer or virtual machine capable of running NFD
• Knowledge about NFD internals, especially management, is a plus

• Junxiao Shi, Davide Pesavento

NFD Management Thread
• Management slows down NFD!

• NFD dispatches management Interests to the management module, in blocking mode.
• Management module verifies command Interest signatures, generates response, and signs Data packets, all in the

same thread as forwarding.
• Packet forwarding is completely halted while management is running.

• This project moves management to a new thread
• Heavy tasks run in the management thread, so they do not block forwarding.
• We cannot make NFD data structures thread-safe in 12 hours, so we use a global lock: all tables

are briefly locked while management accesses them.

• Junxiao Shi, Davide Pesavento

verify signature update table generate response sign response

Forwarding is blocked during all management operations

Forwarding is blocked during table update only

NFD Management Thread
• Other related optimizations

• The new management thread and the existing NFD-RIB talk to NFD forwarding (main thread) via
Unix stream faces. This should be changed to an in-memory shared ring buffer to avoid socket
operations and packet encoding.

• NFD-RIB should be merged into the new management thread, so that RIB can update FIB directly
and not via command Interests.

• You need:
• C++11
• Basic concepts of concurrency and thread synchronization
• Knowledge about NFD internals, especially management
• Computer or virtual machine capable of running NFD

• Junxiao Shi, Davide Pesavento

