
Firefly: A globally scalable message bus
with NDN at the edge

Jeff Thompson, Peter Gusev, Haitao Zhang
5th NDN hackathon, 12/17/2017

1

Needs
● Motivations

○ Sync and repo are still research topics and implementations are in early stages.
○ They cannot provide perfect support for applications.

● Goal: Use Google firestore to emulate a salable, robust,
disruption-tolerant and real time NDN database

2

NDN network

Approaches
● How to store NDN Interest and Data in Firestore

○ Design mapping between Firebase and NDN namespaces and data formats

● How to enable NDN communication between NDN applications and
Firestore

○ Develop bridge process for linking a local NDN network with a Firestore

● How to sync data
○ Design a sync mechanism to sync data between Firestore and applications

● Design and implement a sample application

3

Stored Interest and Data in Firestore
● Firestore: document database

○ Structure: Collection - document - subcollection -
document

○ Collections contains a list of documents
○ Documents contains a list of collections and fields
○ Fields are key-value pairs

● Design: struct Interest and Data as a collection-document tree
○ Map each name component to a collection/document

○ Store an Interest or a Data packet as a key-value
○ An example:

■ /ndn/ndnchat/<user>/session-id/seq →
/ndn/_/ndnchat/_/<user>/_/session-id/_/seq/_

4

Communication between Firestore and Applications
● Firestore: push model, clients listen to changes
● Design:

○ Use firestore push model to implement FireflyFace
■ Emulate NDN pull model
■ Emulate NDN Face methods to communicate with Firestore

○ FireflyFace.registerPrefix() implementation
■ Listen to Firestore documents storing Interest, get notified about new Interests
■ When an interest is received, produce the Data packet and call putData

○ FireflyFace.putData() implementation
■ Add the Data packet to Firestore document for the Data name
■ Remove Interests that it satisfies from Firestore

○ FireflyFace.expressInterest implementation
■ Fetch a matching Data packet from Firestore if it already exists
■ Insert it, with expressTime and lifetime, into Firestore document for this Interest
■ Listen to Firestore data documents; if necessary, add child documents 5

Sync Data
● Basic Design: emulate vector sync

○ Sync namespace: /sync/firefly/fireflychat/<vector>
○ Each member in the chat maintains its own field in the document. That’s a vector:

■ /ndn/ndnchat/haitao/session-id: 19
■ /ndn/ndnchat/peter/session-id: 21
■ /ndn/ndnchat/jeffT/session-id: 30

○ All members in the chat will get notified about the update of the document

● Record history in order: versioned vectors
○ Sync namespace: /sync/firefly/fireflychat/<version>/<vector>
○ Each member in the chat maintains a field in the document; however, instead of changing

the existing document/vector, create a new document/vector whenever a member needs
to update its field.

6

Benefits: Compared with Alternatives
● Alternatives: current NDN repo and sync protocols
● Benefits:

○ Repo:
■ Scalable: work with global network, could handle large dataset.
■ Robust: Firestore is a business product, which has less bugs and work better
■ Real time

○ Sync:
■ Record history records in order

○ Enable NDN application developers to
■ focus on applications implementation without worrying about network problems.
■ They can switch to real NDN network after application development is done.

7

Achieved:
● Interest and Data Storage Schema in Firestore
● Library

○ Firefly face: provides the same APIs and functions as the normal NDN face
○ Firefly sync: provides similar APIs and functions as VectorSync

● A sample application: NDNChat

8

Link & Demo
● Link: https://github.com/5th-ndn-hackathon/firefly
● Demo:

○ Users join and leave chat room
○ Users chat with each other
○ Get history messages

9

https://github.com/5th-ndn-hackathon/firefly

